CHROM. 18 781

Note

Radioiodination of somatostatin analogues employing Sep-Pak rapid sample purification and label assessment by high-performance liquid chromatography

PETER DJURA and RONALD M. HOSKINSON*

C.S.I.R.O., Division of Animal Production, P.O. Box 239, Blacktown, N.S.W. 2148 (Australia) (Received May 12th, 1986)

Somatostatin is a 14-amino-acid peptide first isolated in 1973 by Brazeau and co-workers¹. Interest in this peptide stemmed from its ability to inhibit the secretion of a number of metabolic hormones, including growth hormone, thyroid-stimulating hormone (TSH) and insulin². There has been a continuing interest in methods for radioiodinating derivatives of somatostatin so that the radioligand could be used in hormone assays, receptor binding studies and measurement of somatostatin-specific antibody in serum. A number of reports of labelling somatostatin analogues have employed the Hunter–Greenwood³ procedure using metabisulphite to terminate the process and gel filtration for purification^{4,5}. The instability of these analogues in the presence of metabisulphite had previously been suspected⁶ and some radioiodination procedures substituted a competitive substrate such as bovine serum albumin^{7,8} or tyrosine⁹ to terminate the radioiodination reaction.

We report here studies on the modification of the Hunter–Greenwood labelling technique for radioiodination of somatostatin analogues (Fig. 1, Tyr⁰, Tyr¹, Tyr¹¹), the rapid purification of these peptides with Sep-Pak reversed-phase cartridges¹⁰ and the use of high-performance liquid chromatography (HPLC)¹¹ to monitor the purity of radiolabelled peptide. The purity of radioiodinated somatostatin prepared by this method is compared with that of two commercially available labels. Degradative effects of metabisulphite on ¹²⁵I[Tyr⁰]-somatostatin is also assessed.

Fig. 1. Structures of somatostatin analogues.

EXPERIMENTAL

Instrumentation

Chromatography was conducted using Waters Assoc. equipment consisting of a Model 510A and Model M45 pumping system controlled by a Model 660 gradient programmer and monitored using a Model 481 Lambda-Max variable-wavelength detector set at 273 nm. Samples were injected through a Model U6K injector onto a Nova-Pak C_{18} analytical column.

Separation of peptides was performed using a gradient elution of 0-40% solvent B over 50 min with a flow-rate of 1 ml/min. Solvent A comprised 0.1% trifluoro-acetic acid (TFA) in acetonitrile-water (20:80) and solvent B was 0.1% TFA in 100% acetonitrile. All HPLC radioactive fractions were collected using a Pharmacia Frac-100 set at an 0.5-min collection interval and monitored with a Packard Model 5260 auto gamma scintillation spectrometer.

Chemicals and reagents

Somatostatin, [Tyr⁰]- and [Tyr¹]-somatostatin were obtained from Peninsula Laboratories. Carrier-free Na¹²⁵I was purchased from Amersham Corp. and [Tyr¹¹]-somatostatin was from Bachem. Chloramine-T and sodium metabisulphite were obtained from Sigma. HPLC-grade acetonitrile and Sep-Pak cartridges were from Waters Assoc. UV-grade TFA was obtained from Merck and redistilled from glass prior to use.

Methods

Radioiodinations were performed by the method of Hunter and Greenwood³ with the modification that dilution with distilled water was used to replace metabisulphite quenching in order to inhibit competitive reactions with chemically sensitive peptides. The peptide (10 μ g in 10 μ l of 0.05 M phosphate buffer, pH 6.8), 100 μ l of phosphate buffer and 5 μ l (ca. 0.5 mCi) carrier-free Na¹²⁵I were added to a small stoppered fusion tube (2.0 cm \times 0.5 cm). The reaction was initiated by the addition of 5 μ l of chloramine-T (1 mg/ml) and allowed to proceed at room temperature for 0.5 min with occasional agitation. Reactions were "terminated" prior to Sep-Pak loading by the addition of distilled water (500 μ l) followed by direct application to a preactivated Sep-Pak cartridge via a glass pipette. The cartridge was then washed with distilled water (10 ml) to remove salts and any unreacted iodine. This was followed by a wash with 0.1% TFA in acetonitrile-water (10:90) (5 ml) and final elution of the radiolabel using 0.1% TFA in acetonitrile-water (60:40). These eluants were applied manually with a 10-ml disposable syringe at a flow-rate of ca. 10 ml/min. The radioactivity of each eluted volume was monitored using an Ortec Model 776 gamma counter. The entire labelling reaction and Sep-Pak purification was completed in less than 30 min. The above procedure was performed in a fume hood and all manipulations of radioactive samples were carried out with appropriate lead shielding.

The purity of a $10-\mu$ l sample of the eluted peptide was assessed using the above-mentioned HPLC conditions (see *Instrumentation*). Fractions were collected every 0.5 min, radioactivity monitored and profiles thereof superimposed on the corresponding elution profile of unlabelled peptide.

RESULTS AND DISCUSSION

Our initial attempts at radioiodinating somatostatin analogues using the Hunter–Greenwood procedure yielded a heterogeneous mixture that was not well resolved from Na¹²⁵I during gel filtration. The heterogeneity might be expected from the reductive effects of metabisulphite used to terminate the iodination.

Here we report that a five-fold dilution to "terminate" effectively a radioiodination procedure followed by rapid Sep-Pak elution yields substantially homogeneous radioiodinated peptides. We chose a modification of the Hunter–Greenwood technique due to its overall simplicity and reproducibility in yielding a highly effective label for our antibody immunoassay.

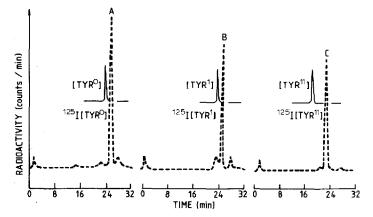


Fig. 2. HPLC elution profiles of radiolabelled somatostatin analogues prepared by the modified Hunter-Greenwood technique after employment of rapid Sep-Pak purification.

The radioactive profiles of several somatostatin analogues are shown in Fig. 2. Unreacted Na¹²⁵I, which would elute within the first 8 min, is minimal. The monoiodo species¹², being the major peak, accounts for more than 80% of the applied radioactivity, whereas chemically modified and the diiodo species account for less than 15% of the residual. Over 80% of the radioactive counts applied to a Sep-Pak cartridge were eluted, with greater than 95% recovery of radioactivity when applied to HPLC.

In a standard Hunter–Greenwood iodination reaction, the time interval between addition of metabisulphite to the reaction and the point at which it separates from the radioiodinated peptide on a gel filtration column may approach 15 min, ample time for significant reductive changes to occur. In order to determine the effect of metabisulphite on these radioligands we treated the ¹²⁵I[Tyr⁰] analogue (10 μ l), which had previously been shown to be relatively homogeneous (see Fig. 2), with a small aliquot of metabisulphite (*ca.* 1 μ g). The HPLC profiles of the time-dependent metabisulphite effect show quite clearly that ¹²⁵I[Tyr⁰]-somatostatin is readily modified to several more polar components (Fig. 3).

The use of Sep-Pak cartridges in the purification of radiopharmaceuticals has,

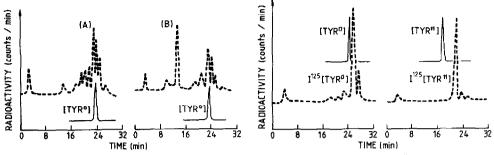


Fig. 3. Degradative effects of sodium metabisulphite on ¹²⁵I[Tyr⁰]-somatostatin. Aliquots of the Sep-Pak-purified label (10 μ l) were treated with 3 μ l of metabisulphite solution (1 mg/5 ml), allowed to stand at room temperature for (A) 5 or (B) 15 min and then assessed by HPLC.

Fig. 4. HPLC of commercially available ¹²⁵I[Tyr⁰]- and ¹²⁵I[Tyr¹¹]-somatostatin.

over the past few years, gained increasing attention. Kilbourn *et al.*¹³ used Sep-Pak cartridges in their purification of compounds containing carbon-11. Miller *et al.*¹⁴ employed Sep-Pak reversed-phase cartridges in their initial purification of radioiodinated Leu-enkephalin and angiotensin, then used HPLC to separate the mono- and diiodo derivatives.

The advantages of using Sep-Pak C_{18} reversed-phase cartridges are that they provide a rapid and efficient means of removing unreacted Na¹²⁵I, they are inexpensive, readily disposable and easy to handle under fume hood conditions, thereby minimizing exposure of the user to volatile ¹²⁵I₂. We have employed Sep-Pak C_{18} reversed-phase cartridges as an alternative to gel filtration in the purification of a number of radiolabelled peptides. The modified Hunter–Greenwood labelling technique, along with the rapid Sep-Pak purification described above, produces a radiolabel which is comparable in purity to commercially available radioligands (*cf.* Figs. 2 and 4).

REFERENCES

- 1 P. Brazeau, W. Vale, R. Burgus, N. Ling, M. Butcher, J. Rivier and R. Guillemin, Science (Washington, D.C.), 179 (1973) 77.
- 2 A. V. Schally, D. H. Coy and C. H. Meyers, Annu. Rev. Biochem., 47 (1978) 89.
- 3 W. M. Hunter and F. C. Greenwood, Nature (London), 194 (1962) 495.
- 4 T. Yamada, D. Marshak, S. Basinger, J. Walsh, J. Morley and W. Stell, Proc. Natl. Acad. Sci. U.S.A., 77 (1980) 1691.
- 5 C. McIntosh, R. Arnold, E. Bothe, H. Becker, J. Köbberling and W. Kreutzfeldt, Gut, 19 (1978) 655.
- 6 Y. C. Patel and S. Reichlin, Endocrinology, 102 (1978) 523.
- 7 V. Harris, J. M. Conlon, C. B. Srikant, K. McCorkle, V. Schusdziarra, E. Ipp and R. H. Unger, Clin. Chim. Acta, 87 (1978) 275.
- 8 J. Gerich, K. Greene, M. Hara, R. Rizza and G. Patton, J. Lab. Clin. Med., 93 (1979) 1009.
- 9 G. Aguilera and D. S. Parker, J. Biol. Chem., 257 (1982) 1134.
- 10 D. D. Gay and R. A. Lahti, Int. J. Pept. Protein Res., 18 (1981) 107.
- 11 O. von Stetten and R. Schlett, J. Chromatogr., 254 (1983) 229.
- 12 B. H. Frank, M. J. Beckage and K. A. Willey, J. Chromatogr., 266 (1983) 239.
- 13 M. R. Kilbourn, D. D. Dischino, C. S. Dence and M. J. Welch, J. Liq. Chromatogr., 5(10) (1982) 2005.
- 14 J. J. Miller, G. S. Schultz and R. S. Levy, Int. J. Pept. Protein Res., 24 (1984) 112.